Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(f1(x)) -> g1(f1(x))
g1(g1(x)) -> f1(x)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(f1(x)) -> g1(f1(x))
g1(g1(x)) -> f1(x)

Q is empty.

Q DP problem:
The TRS P consists of the following rules:

F1(f1(x)) -> G1(f1(x))
G1(g1(x)) -> F1(x)

The TRS R consists of the following rules:

f1(f1(x)) -> g1(f1(x))
g1(g1(x)) -> f1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ QDPAfsSolverProof

Q DP problem:
The TRS P consists of the following rules:

F1(f1(x)) -> G1(f1(x))
G1(g1(x)) -> F1(x)

The TRS R consists of the following rules:

f1(f1(x)) -> g1(f1(x))
g1(g1(x)) -> f1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

G1(g1(x)) -> F1(x)
Used argument filtering: F1(x1)  =  x1
f1(x1)  =  f1(x1)
G1(x1)  =  x1
g1(x1)  =  g1(x1)
Used ordering: Quasi Precedence: [f_1, g_1]


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPAfsSolverProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F1(f1(x)) -> G1(f1(x))

The TRS R consists of the following rules:

f1(f1(x)) -> g1(f1(x))
g1(g1(x)) -> f1(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.